Cel·lo i cel·lofana de colors

Més experiències amb polaritzadors… recordeu que no cal disposar d’una làmina polaritzant com la del vídeo doncs és cara i difícil d’obtenir, podem fer-ho amb unes ulleres de sol doncs les de més qualitat són polaritzades.

El primer que podem fer és observar que les pantalles d’ordinador, fixes o portàtils, emeten llum polaritzada amb una direcció de 45 graus amb l’horitzontal. Així doncs si observem una pantalla amb unes ulleres de sol polaritzades i inclinem el cap 45º veurem que la pantalla es torna negra perquè la direcció del polaritzador és perpendicular a la llum incident provinent de la pantalla.

Una segona part d’aquesta proposta consisteix en observar cel·lo interposat entre la pantalla i el polaritzador. Observem gruixos de cel·lo d’1, 2, 3… capes enganxades sobre un plàstic transparent i… els veiem de colors diferents segons el gruix. Si a més girem el polaritzador 90 graus observarem que els seus colors canvien justament al color complementari en cada cas. això és degut a que la cinta adhesiva és birrefringent, la llum que la travessa es divideix en dos raigs polaritzats perpendicularment i polaritza els dos rajos i la substància té per a cada raig un índex de refracció diferent.

L’explicació del fenomen és una mica complexa: Quan la llum polaritzada blanca (de la pantalla) passa a través de la cinta adhesiva (birefringent) es divideix en dues components (polaritzades perpendicularment) i cadascuna segons un índex de refracció (velocitat) diferent de manera que els dos raigs es desfasen. Aquest desfasament provoca interferències constructives o destructives segons el gruix de la làmina i la longitud d’ona de cada color de la llum. Si girem 90 graus el polaritzador aleshores el color anul·lat per interferència destructiva (oposició de fase) passa a tenir una interferència constructiva, els colors resultants solen ser els complementaris. Bé, una explicació per a pensar-hi una estona en una nit d’insomni!

Diapasó ressonant

Resultat d'imatges de diapasó musical

Diapasó musical de 440 Hz, la nota LA

Segurament hem vist alguna vegada un músic que es treu un petit diapasó de la butxaca, li dona un cop i se’l col·loca prop de l’orella, això ho fa per agafar el to de la nota La (440 Hz) i que li serveix de referència per afinar l’instrument. Els ossos del seu crani fan aquest cas de caixa de ressonància i sent internament la nota.
En el nostre cas tenim un diapasó de 440 Hz una mica més gran i amb una caixa de ressonància de fusta i podem comprovar que el diapasó ressona només si emetem prop d’ell un so de la seva freqüència pròpia i en canvi si el so difereix d’aquest valor (encara que sigui lleugerament: 420 o 460 Hz) el diapasó ja no ressona.

Amb aquesta experiència comprovem que qualsevol objecte que oscil·la o vibra (un pèndol, un gronxador, una molla, una copa de vidre…) té una freqüència pròpia i que només entrarà en ressonància si la forcem amb un impuls extern periòdic que coincideix amb la seva freqüència pròpia. en el cas del diapasó, que oscil·la a 440 Hz la única manera de fer-lo entrar en ressonància és a través d’una ona sonora d’aquesta freqüència que generem a través de l’app del mòbil (Function Generator) i amplificada per un altaveu.
Aquesta ressonància forçada pot arribar a maximitzar les oscil·lacions, en el cas d’un gronxador podríem arribar a fer-lo donar la volta o potser hem vist el famós vídeo del pont de Tacoma que es va ensorrar degut a que va entrar en ressonància per l’efecte del vent.

Reflexes polaritzats

ullerespolaritzants

Anunci d’ulleres de sol amb vidres polaritzants

Les ulleres de sol de qualitat (no les barates que podem trobar en un basar xinés) porten els vidres polaritzants i així ho fan saber en els seu anuncis, però sabem exactament perquè són millors els vidres que polaritzen?

Doncs bàsicament perquè eliminen els reflexos de la llum en qualsevol superfície no metàl·lica: vidre, plàstic, aigua… tal com podem veure en el vídeo. En aquestes superfícies la llum que es reflexa surt polaritzada amb un efecte màxim per l’angle incident coincidint amb l’angle de Brewster.

Així doncs amb aquestes ulleres eliminarem els reflexos (polaritzats) de la llum solar a la carretera o a les parts plàstiques de l’interior del cotxe fent la conducció més descansada, també podrem observar tranquil·lament un aparador encara que estigui fortament il·luminat per la llum de dia o podrem observar una persona dins d’un cotxe talment com si no hi hagués el vidre parabrisa.

Les ulleres polaritzants també tenen altres efectes: enfosqueixen el cel si l’observem en direcció perpendicular als rajos solars (efecte utilitzat pels fotògrafs), no deixen gaudir de l’Arc de Sant Martí (llum reflectida a les gotes d’aigua i també polaritzada) i impedeixen veure, en alguns casos, les pantalles de cristall líquid dels cotxes (efecte molt negatiu que podem solucionar girant el cap 90º).

Apali, aneu a buscar un polaritzador i aneu mirant i buscant reflexos polaritzats com si busquéssiu Pokémons!

Una pila que roda sola

Si ja vas veure El motor més senzill del món, ara pots gaudir de El vehicle elèctric més simple de l’Univers.

pila

Corrent elèctric (blau), camp magnètic (vermell) i força magnètica i moviment (verd) en la pila que roda sola

El material necessari és, com sol ser habitual, uns imants de neodimi, una pila AA i paper d’alumini (del de cuina). Només cal que els imants de neodimi tinguin un diàmetre un xic superior a la pila i enganxar els imants als dos costats de la pila però amb els pols nord (o sud) enfrontats tal com es pot veure en l’esquema.

El paper d’alumini i els dos imants, conductors elèctrics, fan que el circuit elèctric es tanqui i es generi un corrent (color blau) en sentit horari en el dibuix. El camp magnètic intens (color vermell) actua sobre aquest corrent elèctric realitzant una força magnètica sobre cada imant, seguint la regla de la mà dreta, que fa desplaçar el conjunt en el mateix sentit (color verd) que la força, cap a dins de la pantalla.

Si els dos imants de neodimi són de diferent diàmetre el conjunt es desplaçarà igualment però descrivint un moviment de rotació sobre la taula de forma contínua. Aquesta darrera idea està extreta d’una demostració d’en Lluís Nadal i Balandras, professor de l’institut Lluís de Requesens de Molins de Rei i un dels millors divulgadors científics de Catalunya, gràcies Lluís!

Bé, i ara cap a la cuina a buscar el paper d’alumini…

La taula parada i en Newton

Segur que mai ens hem atrevit a comprovar la primera llei de Newton (la de la inèrcia) estirant fort i ràpid les tovalles quan la taula està tota parada amb tots els plats de ceràmica, les copes de vidre… i això que molt sovint ho hem sentit explicar al professor de Física o ho hem vist en películes de dibuixos animats.

Si realment tenim confiança en les lleis de la Física no hauríem de dubtar gens en fer-ho… en el vídeo no solament ho fan sinó que ho fan amb talla XXL.

Ja veus que no és tan complicat i que ja et pots animar a fer-ho en acabar el dinar familiar de Nadal… que tinguis molta sort… i, sobretot, confiança en la Física!